

Quantifying the Benefits of Applying Quality Compost to Soil

Dr Jane Gilbert

www.iswa.org

Background to ISWA & the project

ISWA is the world's leading network promoting professional and sustainable waste- and resource management

- Project:
 - 'Quantify the Benefit of Organic Matter in Compost and Digestate When Applied to Soils'
 - Started in 2018 & completed Q1 2020
- Team:
 - Marco Ricci-Jürgensen, CIC, Italy
 - Jane Gilbert, Carbon Clarity, UK
 - Aditi Ramola, ISWA, Austria

Why soil?

Because it's part of the natural carbon cycle

BUT ... Globally, soil is under threat

- 80% of the world's agricultural land suffers moderate to severe erosion
- 10 million ha of agricultural land are lost through soil erosion every year (~0.7%)
- Over last 40 years ~30% of world's cropland has become unproductive
- "Soil is being lost from agricultural areas 10 to 40 times faster than the rate of soil formation imperilling humanity's food security"
- Loss of soil organic matter is a major factor

ISWA's Soils Project

ISWA's Soils Project

- Aimed to provide robust evidence base to link waste management and soil enhancement/improvement
- Reviewed:
 - Organic waste arisings & recycling (Report 1)
 - Benefits to soil of compost & digestate (Report 2)
 - Status of soils in five countries (Report 3)
 - Calculation of carbon sequestration and nutrient benefits of compost to soil (Report 4)
- Reports provide a tool for waste planners/managers and farmers

www.iswa.org/media/publications/ iswa-soils-project

ISWA Report 2

- Comprehensive literature review during 2019
 - Peer-reviewed scientific papers
 - Governmental body reports (e.g. European Commission & FAO)
- Looked at effects of organic amendments (compost & anaerobic digestate) on soil properties:
 - Physical
 - Chemical
 - Biological

Organic waste transformations

Organic waste composition

Component	Description
Lignin	Complex polymer ('wood') Degraded slowly – needs O ₂
Cellulose	Polymer of glucose
Hemi-cellulose	Polymer of glucose & other sugars
Proteins	Nitrogen rich
Carbohydrates	Sugars & polysaccharides
Lipids	Fats & oils

HUMIFICATION Only though to occur during composting

Adding organic amendments to soil

Benefits greatest over ~ first 20 years

ISWA Report 4

- Report aims to help fill an information gap about the benefits of organic matter in soil
- Report presents estimates of the potential benefit of applying quality compost to soil, from the point of view of:
 - Carbon sequestration
 - Total plant macro nutrients applied
 - Increase in available water capacity
 - Monetary benefits: C & nutrients

SOC stocks and sequestration rates

30 tonnes compost (FM)/ha/a

After 20 years of annual application:

- Over 10 t/ha SOC increase at the lowest sequestration scenario
- Over **25 t/ha SOC** increase at the highest sequestration scenario rate

Sounds good...

... but what does it mean?

Figure 2 - Modelled SOC increases following annual compost application of 30 tonnes per hectare (fresh mass) over 10 and 20 years

SOC concentrations & sequestration rates ISWA

These changes become significant when % SOC is calculated:

- SOC levels can be increased by between 0.40-0.55 % (m/m) depending upon the density of the receiving soil over 20 years
- ✓ significant in the restoration of soils with a low content of organic carbon levels
- ✓ effect greatest in soils with low densities, such as clayey soils

INCREASES IN PERCENTAGE OF SOC

Figure 3 - Modelled changes in the fraction of SOC following 30 tonnes hectare⁻¹ year⁻¹ assuming a medium (50) sequestration rate at different soil densities

Carbon dioxide equivalents

- Increase of SOC acts as a C-sink, sequestering C from atmosphere
- Calculated amounts of C-sink for the modelled scenarios and expressed in CO₂ equivalents

	Sequestered carbon in carbon dioxide equivalents (tonnes hectare-)					
	Timeframe (10 years)			Timeframe (20 years)		
Annual compost application rate (fresh mass) to 1 ha of soil (t ha '' yr ')	LOW 30	MEDIUM 50	HIGH 70	LOW 30	MEDIUM 50	HIGH 70
10	6.6	11.0	15.4	13.2	22.0	30.8
30	19.8	33.0	46.2	39.6	66.1	92.5
50	33.0	55.1	77.1	66.1	110.1	154.1

Table 10 - Calculated amounts of sequestered carbon for the modelled scenarios expressed in carbon dioxide equivalents

Carbon accounting & cumulative value

- C-sequestration in soil through annual application of quality compost
- Price for C-sequestration following World Bank estimation (Paris accord)
- \rightarrow Estimate monetary potential
- →Examples (right) for C-pricing value of USD/t CO₂ 60/t or EUR/t CO₂ 52.80

 Table 11 - Estimated monetary value of compost in terms of carbon

 dioxide sequestration (2020 carbon pricing at EUR 52.80 per tonne of carbon dioxide)

SOC sequestration rate scenario	LOW 30	MEDIUM 50	HIGH 70
CO ₂ eq (kg tonne ⁻¹ compost dry mass)	110	184	257
CO ₂ eq (kg tonne ⁻¹ compost fresh mass)	66	110	154
Price per tonne compost dry mass (2020 value)	€ 5.81	€9.72	€ 13.57
Price per tonne compost fresh mass (2020 value)	€3.49	€ 5.81	€ 8.14

Carbon accounting & cumulative value

→Estimate monetary potential

- potential value of this carbon in today's money due to annual compost application over both the 10- and 20-year timescales
- modelled for
 - three different SOC seq. rates
 - three different compost application rates
 - using a 3% discount rate

	10 years			20 years		
Compost application rate (t ha ⁻¹ yr ⁻¹ fresh mass)	LOW (30)	MEDIUM (50)	HIGH (70)	LOW (30)	MEDIUM (50)	HIGH (70)
10	€ 336	€ 563	€ 786	€642	€ 1074	€ 1500
30	€ 1009	€ 1688	€ 2357	€ 1926	€ 3221	€ 4499
50	€ 1682	€ 2813	€ 3929	€ 3206	€ 5368	€ 7498

Table 12 - Estimated value of carbon sequestered in soil in 10- and 20-year time horizons in today's money

European potential

Europe Potential Europe Current 128 MILLION 48 MILLION TONNES A YEAR OF TONNES A YEAR OF **BIO-WASTE BIO-WASTE** Bio-waste in the EU: 118 and 138 million tpa in EU **12 MILLION** 32 MILLION TONNES A YEAR OF TONNES A YEAR OF • < 40% is currently recycled into COMPOST COMPOST useable products • ~ 12 million tpa compost 3.5 MILLION **1.3 MILLION** TONNES TONNES A YEAR OF CO₂ A YEAR OF CO₂ **EOUIVALENTS EOUIVALENTS** EQUIVALENT TO 281 FOUIVALENT TO 756 WIND TURBINES RUNNING WIND TURBINES RUNNING FOR A YEAR FOR A YEAR **SAVE ORGANICS IN SOIL**

Conclusions

Thank you

Dr Jane Gilbert

ISWA WG on Biological Treatment of Waste

www.iswa.org/media/publications/iswa-soils-project